A Tuned Preconditioner for Inexact Inverse Iteration Applied to Hermitian Eigenvalue Problems
نویسندگان
چکیده
In this paper we consider the computation of an eigenvalue and corresponding eigenvector of a large sparse Hermitian positive definite matrix using inexact inverse iteration with a fixed shift. For such problems the large sparse linear systems arising at each iteration are often solved approximately by means of symmetrically preconditioned MINRES. We consider preconditioners based on the incomplete Cholesky factorisation and derive a new tuned Cholesky preconditioner which shows considerable improvement over the standard preconditioner. This improvement is analysed using the convergence theory for MINRES. We also compare the spectral properties of the tuned preconditioned matrix with those of the standard preconditioned matrix. In particular, we provide both a perturbation result and an interlacing result, and these results show that the spectral properties of the tuned preconditioner are similar to those of the standard preconditioner. For Rayleigh quotient shifts, comparison is also made with a technique introduced by Simoncini and Eldén [Inexact Rayleigh quotient-type methods for eigenvalue computations, BIT, 42 (2002), pp. 159-182] which involves changing the right hand side of the inverse iteration step. Several numerical examples are given to illustrate the theory described in the paper.
منابع مشابه
A New Inexact Inverse Subspace Iteration for Generalized Eigenvalue Problems
In this paper, we represent an inexact inverse subspace iteration method for computing a few eigenpairs of the generalized eigenvalue problem Ax = Bx [Q. Ye and P. Zhang, Inexact inverse subspace iteration for generalized eigenvalue problems, Linear Algebra and its Application, 434 (2011) 1697-1715 ]. In particular, the linear convergence property of the inverse subspace iteration is preserved.
متن کاملFast inexact subspace iteration for generalized eigenvalue problems with spectral transformation
We study inexact subspace iteration for solving generalized non-Hermitian eigenvalue problems with spectral transformation, with focus on a few strategies that help accelerate preconditioned iterative solution of the linear systems of equations arising in this context. We provide new insights into a special type of preconditioner with “tuning” that has been studied for this algorithm applied to...
متن کاملEfficient Preconditioned Inner Solves For Inexact Rayleigh Quotient Iteration And Their Connections To The Single-Vector Jacobi-Davidson Method
We study inexact Rayleigh quotient iteration (IRQI) for computing a simple interior eigenpair of the generalized eigenvalue problem Av = λBv, providing new insights into a special type of preconditioners with “tuning” for the efficient iterative solution of the shifted linear systems that arise in this algorithm. We first give a new convergence analysis of IRQI, showing that locally cubic and q...
متن کاملTuned preconditioners for inexact two-sided inverse and Rayleigh quotient iteration
Convergence results are provided for inexact two-sided inverse and Rayleigh quotient iteration, which extend the previously established results to the generalized eigenproblem, and inexact solves with a decreasing solve tolerance. Moreover, the simultaneous solution of the forward and adjoint problem arising in two-sided methods is considered and the successful tuning strategy for preconditione...
متن کاملInexact Inverse Subspace Iteration with Preconditioning Applied to Non-Hermitian Eigenvalue Problems
Convergence results are provided for inexact inverse subspace iteration applied to the problem of finding the invariant subspace associated with a small number of eigenvalues of a large sparse matrix. These results are illustrated by the use of block-GMRES as the iterative solver. The costs of the inexact solves are measured by the number of inner iterations needed by the iterative solver at ea...
متن کامل